

19 October 2022

Major northern extension of Gonneville Intrusion confirmed

New drilling validates the recent 2D seismic survey interpretation, intersecting the northern extension of the complex down-plunge

Highlights

- Orilling has confirmed the interpreted extension of the Gonneville Intrusion at the Julimar Ni-Cu-PGE Project in WA, validating the results of the recent 2D seismic survey:
 - « Several zones of sulphide mineralisation intersected in a ~950m deep drill hole, interpreted to be continuations of the high-grade G zones **~850m down-plunge of the Resource** all assays pending.
 - « Several strong off-hole EM targets (up to 10,000S) detected drilling underway to test.
 - « Seismic confirmed as a **powerful new targeting tool** for imaging and modelling of the subsurface geometry of the >30km long Julimar Complex.
- « Northern extension of the Gonneville Intrusion (and Julimar Complex) confirmed to be offset ~650m west-north-west by a fault, consistent with the seismic interpretation:
 - « Several zones of sulphide mineralisation intersected up to ~1.2km north of the current Resource all assays pending and all zones remain wide-open.
 - Offset explains the disappointing results at Hartog to date and indicates that the Gonneville Resource is trending beneath the Julimar State Forest at depth.
 - Orilling along northern seismic line, ~1.6km north of the current Resource, awaiting approvals.
- Extensional drilling at the Gonneville Resource has extended the mineralised zones up to ~600m beyond the current Resource, with several exceptional new high-grade results, including:
 - **70m @ 2.4g/t 3E, 0.2% Ni, 0.2% Cu, 0.02% Co (1.2% NiEq)** from 638m (JD220W3), incl:
 - (G2); 16.9m @ 7.9g/t 3E, 0.4% Ni, 0.6% Cu, 0.03% Co (3.5% NiEq) from 638m (G2);
 - (4 14m @ 5.8g/t 3E, 0.2% Ni, 0.2% Cu, 0.01% Co (2.2% NiEq) from 689m (JD344, G4);
 - **3.4m @ 4.3g/t 3E, 0.7% Ni, 0.9% Cu**, 0.04% Co (**2.9% NiEq**) from 718.5m (JD332W1, G2);
 - 7m @ 5.0g/t 3E, 0.3% Ni, 0.3% Cu, 0.02% Co (2.2% NiEq) from 570m (JD337, G11);
 - 5.3m @ 5.5g/t 3E, 0.2% Ni, 0.6% Cu, 0.02% Co (2.3% NiEq) from 898m (JD018W1, G4).
- Consistent PGE-Ni-Cu-Co sulphide mineralisation intersected in all 10 holes assayed to date into the Hooley-Dampier prospects, located 5-10km north of the Gonneville Resource – three rigs are continuing to test this trend and seismic/EM will be used to vector towards high-grade zones.
- « Strategic interest in the **large nickel sulphide endowment** at the Project has increased significantly following the passing of the US Inflation Reduction Act (IRA) bill.
- « Chalice is considering securing a **strategic minority joint venture partner (or partners)** to assist in developing a potential mine at Gonneville.

Overview

Chalice Mining Limited ("Chalice" or "the Company", ASX: CHN | OTCQB: CGMLF) is pleased to provide an update on exploration activities at its 100%-owned **Julimar Nickel-Copper-Platinum Group Element (PGE) Project**, located ~70km north-east of Perth in Western Australia.

Exploration activities are continuing across the >30km long Julimar Complex, with four diamond drill rigs currently drilling across the 10km long Hartog-Baudin strike length and two rigs continuing resource definition drilling at the Gonneville PGE-Ni-Cu-Co-Au Deposit – current Resource of 350Mt @ 0.96g/t 3E, 0.16% Ni, 0.10% Cu, 0.015% Co (~0.58% NiEq or ~1.8g/t PdEq), refer to the ASX Announcement on 8 July 2022 and Appendix A.

Drilling to date supports the interpretation of the Gonneville Intrusion (and Julimar mafic-ultramafic Complex) as having a rare chonolith-like geometry, which is similar to other major ultramafic-mafic orthomagmatic systems worldwide that host significant nickel-copper+/-PGE deposits, including Norilsk-Talnakh, Kabanga and Jinchuan (Barnes et al, 2016).

Chalice recently made an important breakthrough in exploration at the project, with the previously elusive northern extension of the Gonneville Intrusion interpreted at depth in an effective 2D seismic survey.

Previous drilling in this area (at the Hartog Prospect) had failed to intersect the prospective maficultramafic horizon, which drilling has now confirmed to be faulted ~650m to the west-north-west (Figure 1).

This new Hartog segment of the Julimar Complex can now be targeted with follow-up drilling, providing a substantial pathway for growth in the Resource, which remains open along strike and at depth.

¹ Barnes SJ, Cruden A.R, Arndt, A & Saumur, B., 2016. The mineral system approach to magmatic Ni-Cu-PGE sulphide deposits. Ore Geology Reviews 76, 296-316

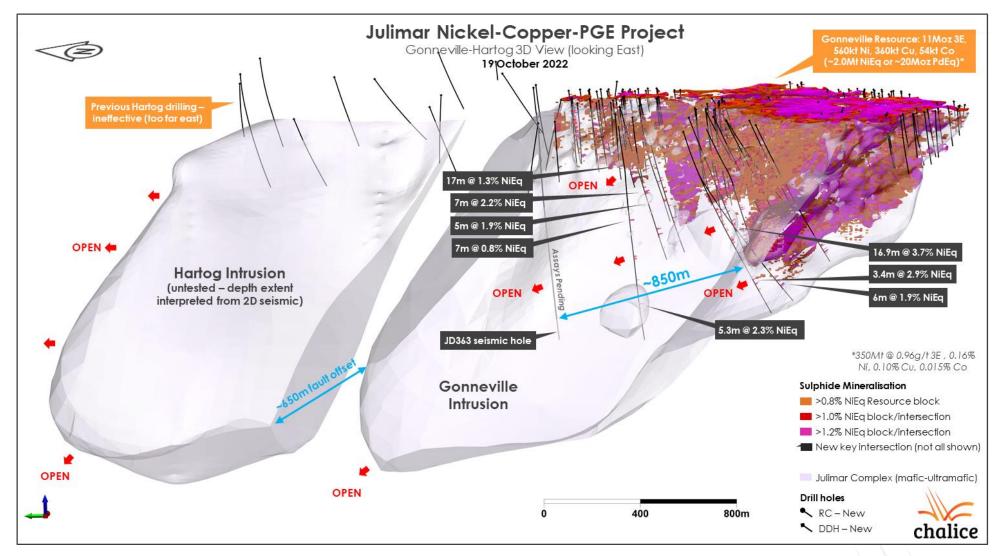


Figure 1. Gonneville and Hartog intrusions (~3.5km section of the Julimar Complex) 3D View (looking East).

ASX:CHN OTCQB:CGMLF Chalice Mining Limited 3

Drilling further north has now confirmed the Gonneville Resource, discovered in early 2020 on Chalice-owned farmland, is just a small part of the Julimar Complex. The complex is a very large mineralised system, which Chalice believes is capable of hosting multiple discrete Ni-Cu-PGE deposits, as evidenced by multiple sulphide drill intersections in wide-spaced drilling to date over ~10km of strike length (Figure 2).

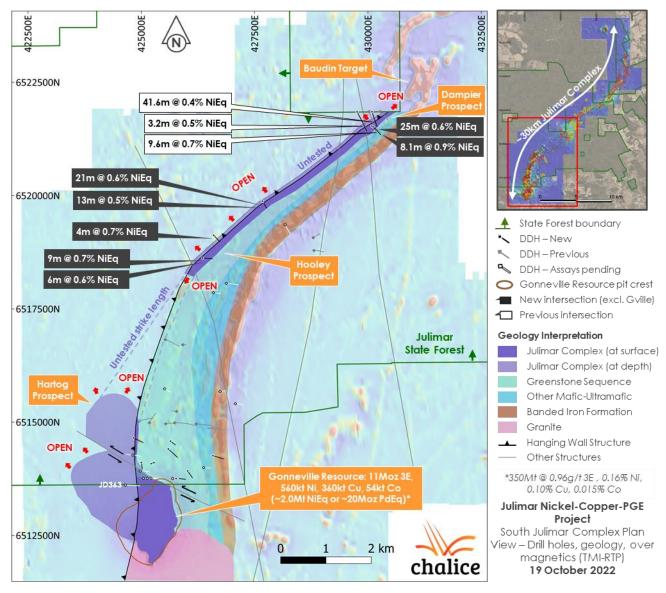


Figure 2. South Julimar Complex Plan View – drill holes, geology over airborne magnetics.

The vast majority of the complex is still unexplored and lies beneath a small portion of the Julimar State Forest, a \sim 29,000ha area of native vegetation. State forests are managed by the Department of Biodiversity, Conservation and Attractions for a range of values including conservation and other land uses.

Importantly, State Forest classification does not prohibit applications for and grant of mining leases subject to normal regulatory approvals processes. The southern portion of Julimar State Forest, where Chalice is currently drilling, is covered by an isolated section of Alcoa's bauxite state agreement (ML 1SA).

Chalice's ongoing exploration drilling program in the Julimar State Forest is utilising specialist diamond drill rigs with a small footprint and does not involve any mechanised clearing of vegetation or excavation. Comprehensive flora, fauna and culture heritage surveys and monitoring are being used

according to industry best practice. The low-impact program is strictly governed by a Conservation Management Plan (CMP) approved by the WA Government in late 2021.

Chalice's strategy at Julimar is to advance development studies and regulatory approvals for a potential mine at Gonneville (on farmland), in parallel with exploration activities across the full >30km extent of the Julimar Complex.

Exploration is continuing rapidly on broad spacing along the complex, targeting new high-grade Ni-Cu-PGE sulphide deposits which could add considerable value to a Gonneville mine, or potentially warrant a separate mine development. It is also possible that different styles of mineralisation could be intersected along the complex, potentially contributing to significant long-term value-creation that a world-class mineral district can create.

Given the considerable scale of the project, Chalice is considering securing a strategic minority joint venture partner (or partners) with the technical expertise, market familiarity and financial strength to assist in developing a potential mine at Gonneville.

Several large international trading houses, downstream battery and auto manufacturers have expressed interest to date, with the recent Inflation Reduction Act bill in the United States resulting in a significant increase in inbound interest in Julimar's large nickel sulphide endowment.

At this stage, discussions with potential partners are preliminary in nature and the Company is focused on delivering the Scoping Study for a Gonneville mine development in late 2022.

The following activities are continuing at the project:

- « Resource definition and extensional diamond drilling at Gonneville with two drill rigs.
- « Detailed infill RC Resource definition drilling over a small area of the Gonneville Resource to improve the understanding of the short-range variability and continuity of higher-grade zones.
- « Reconnaissance diamond drilling across the Hartog, Hooley and Dampier prospects (target areas across ~10km of Julimar Complex strike length) with three rigs, under the approved CMP.
- « Reconnaissance diamond drilling at the Baudin Target, ~11km north of Gonneville, drilling from proximal areas of farmland as part of the DMIRS Exploration Incentive Scheme (EIS).
- Moving Loop Electromagnetic (MLEM) and Down-hole EM (DHEM) surveys across the Julimar Complex, with further seismic surveying also planned.
- « Access discussions for the Bindoon Training Area which covers the high-priority Flinders Target, ~25km NE of Gonneville.
- « Mine development studies to support a Scoping Study for a Gonneville mine, on track for completion in late 2022.
- « Baseline surveys of ground water, surface water, flora, fauna and dieback are underway, as part of a long-term baseline and monitoring program to support engineering studies and environmental assessments.

Technical discussion

Gonneville-Hartog Exploration

Drilling has validated the recently acquired 2D seismic survey and confirmed the continuation of the Gonneville Intrusion (and Julimar Complex) to the north-west beneath the Julimar State Forest.

Shallow intervals of the Julimar Complex have been intersected up to ~1.2km north of the current Resource. Drilling on four wide-spaced drill lines has intersected narrow widths (<50m wide) of intrusive ultramafic rocks in five holes containing variable zones of disseminated sulphides (all assays are pending). Drilling has demonstrated that the continuation of the Julimar Complex is offset ~650m west along a west-north-west trending fault zone (Figure 1).

As a result of this fault offset, currently permitted drill pads are located too far to the east to provide sites for effective drilling of the Hartog Intrusion, and additional drill sites are currently awaiting approval.

Two diamond drill holes, drilled on north-east azimuths to test the northern limit of the Gonneville Resource in the Julimar State Forest, have intersected mineralised ultramafic rocks up to ~80-100m north of the Resource (Figure 2). All assays are pending and, subject to positive results, further infill drilling is planned to scope out a potential extension of the Resource in this area.

JD363 was drilled on the northern farmland boundary to test the validity of the interpretation of the recent seismic survey and initial results have provided a strong endorsement for this technique to resolve intrusive geology at depth.

The Gonneville intrusion was intersected from 397-912m down-hole (~515m wide) with the hanging wall and footwall contacts intersected within ~20m of their modelled positions. An internal contact between the uppermost leucogabbro and the underlying ultramafic domain (671m down-hole) was also intersected close to the interpreted position.

The lowermost ultramafic domain (pyroxenite, harzburgite) contains weak to moderate disseminated sulphides (pyrrhotite-dominant) and minor intervals (~1m wide) of matrix sulphides. All assays are pending.

The interpretation of sulphides are visual estimates made by qualified geologists and appropriate caution should be considered when interpreting the significance of these results. Assays are required to determine the significance of mineralisation.

The close correlation between the seismic interpretation and the geology intersected in JD363 provides confidence that seismic is an effective exploration technique for outlining mafic/ultramafic intrusions within the poorly exposed Julimar Complex. Further seismic surveying is being planned within the Julimar State Forest on existing recreational tracks.

Down-hole EM (DHEM) of JD363 has identified a series of high conductance anomalies up to ~200m from the drill-hole which are planned to be drill tested over the coming weeks. These include:

- « An off-hole anomaly at 280m down-hole (70m x 110m; 2,200 Siemens) associated with stringer/breccia sulphides (279.6-286.5m) within a previously identified hanging wall ultramafic unit ~120m above the Gonneville Intrusion. This interval represents a depth extension of a previously defined zone of PGE-Ni-Cu-Co sulphide mineralisation.
- « An in-hole anomaly at 870m down-hole (200m x 150m; 1,500 Siemens) broadly associated with narrow intervals of matrix sulphides within the ultramafic domain of the Gonneville intrusion. Modelling of the DHEM suggests that JD363 has only intersected the top north-eastern corner of this DHEM conductor. A wedge drill-hole is planned to test this target.
- « An off-hole anomaly at 775m down-hole (200m x 200m; 10,000 Siemens) which is located internal to the ultramafic domain. This target is planned to be tested by a separate surface drill hole.

The DHEM results provide promising targets for wide-spaced step-out exploration along the prospective ultramafic domain and basal contact of the Gonneville Intrusion.

Gonneville Resource Drilling

Extensional drilling targeting mineralisation down-dip of the Gonneville Resource continues to intersect significant zones of mineralisation. Drilling to date targeting the area down-plunge of high-grade zones is on broad spacings with holes generally greater than 100m apart. Significant down-dip extensional results include:

- 70m @ 2.4g/t 3E, 0.2% Ni, 0.2% Cu, 0.02% Co (1.2% NiEq) from 638m (JD220W3), incl:
 - 16.9m @ 7.9g/t 3E, 0.4% Ni, 0.6% Cu, 0.03% Co (3.5% NiEq) from 638m (JD220W3 G2), incl:
 - « 3.8m @ 6.7g/t 3E, 1.3% Ni, 0.6% Cu, 0.09% Co (4.2% NiEq) from 638m, and:
 - « 9.9m @ 10.7g/t 3E, 0.1% Ni, 0.7% Cu, 0.01% Co (4.5% NiEq) from 645m

- 4.3g/t 3E, 0.7% Ni, 0.9% Cu, 0.04% Co (2.9% NiEq) from 718.5m (JD332W1 G2);
- « 7m @ 5.0g/t 3E, 0.3% Ni, 0.3% Cu, 0.02% Co (2.2% NiEq) from 570m (JD337 G11), incl:
 - " 3.1m @ 6.0g/t 3E, 0.4% Ni, 0.5% Cu, 0.03% Co (2.8% NiEq) from 573.9m;
- 4 5.3m @ 5.5g/t 3E, 0.2% Ni, 0.6% Cu, 0.02% Co (2.3% NiEq) from 898m (JD018W1 G4);
- 6m @ 4.5g/t 3E, 0.2% Ni, 0.4% Cu, 0.02% Co (1.9% NiEq) from 821m (JD332W1 G4), incl:
 - (Comparison of the comparison of the comparison
- « 5m @ 5.2g/t 3E, 0.1% Ni, 0.1% Cu, 0.02% Co (1.9% NiEq) from 437m (JD340);
- (17m @ 1.6g/t 3E, 0.4% Ni, 0.4% Cu, 0.03% Co (1.3% NiEq) from 343m (JD348 G8) incl:
 - « 5m @ 2.6g/t 3E, 0.8% Ni, 1.1% Cu, 0.08% Co (2.8% NiEq) from 343m;
- (17.8m @ 2.0g/t 3E, 0.4% Ni, 0.1% Cu, 0.02% Co (1.1% NiEq) from 374m (JD348 G3), incl:
 - « 4.8m @ 4.2g/t 3E, 0.8% Ni, 0.2% Cu, 0.05% Co (2.4% NiEq) from 387m.

Results from limited ongoing infill drilling within the Gonneville Resource are continuing to confirm the resource and geological model.

Hooley and Dampier Prospects

13 wide-spaced drill holes have been completed to date at the Hooley and Dampier prospects with assays pending for three holes. Drilling at the ~2.5km long Hooley Prospect (~5km north of Gonneville) has intersected several zones of PGE-dominant sulphide mineralisation, in what appears to be a continuation of the Julimar Complex geology, providing an exciting confirmation of the size of the mineral system at Julimar (Figure 2).

Assays have been received for the first three holes at the Hooley Prospect, which were designed to provide initial wide-spaced tests of EM/geochemical targets in a newly defined trend of ultramafic-mafic intrusive rocks that have a similar litho-geochemical signature to Gonneville. Promising results have been received to date, including:

- « 21m @ 1.3g/t 3E, 0.1% Ni, 0.1% Cu, 0.01% Co (0.6% NiEq) from 156m (HD021) incl:
 - « 4m @ 4.2g/t 3E (1.2% NiEq) from 156m, incl;
 - « 2m @ 6.55g/t 3E from 158m the highest PGE grades intersected outside of Gonneville to date.
- " 13m @ 0.9g/t 3E, 0.1% Ni, 0.1% Cu, 0.01% Co (0.5% NiEq) from 200m (HD021) incl:
 - 2.2m @ 0.9g/t Pd, 0.5g/t Pt, 0.2% Ni, 0.1% Cu, 0.02% Co (0.7% NiEq) from 201.8m, and;
 - « 2.2m @ 1.4g/t 3E, 0.2% Ni, 0.1% Cu, 0.02% Co (0.7% NiEq) from 201.8m (HD021);
- 4m @ 0.3g/t 3E, 0.3% Ni, 0.3% Cu, 0.03% Co (0.7% NiEq) from 286.7m (HD027);
- « 9m @ 2.0g/t 3E, 0.1% Ni, 0.01% Co (0.7% NiEq) from 33m (HD030) incl:
 - 4.6m @ 2.6g/t 3E, 0.1% Ni, 0.02% Co (0.9% NiEq) from 36m (HD030);
- « 6m @ 1.2g/t Pd, 0.1% Ni, 0.1% Cu, 0.01% Co (0.6% NiEq) from 54m (HD030).

Promising results have also been received for the remaining three drill holes completed at the Dampier Prospect, including:

- « 8.1m @ 2.5g/t 3E, 0.1% Ni, (0.9% NiEq) from 252m (HD019);
- « 25m @ 1.3g/t 3E, 0.1% Ni, 0.1% Cu, 0.01% Co (0.6% NiEq) from 35m (HD022), incl:
 - « 4m @ 4.4g/t 3E from 35m.

Three drill rigs are continuing to test down-dip and along strike across the ~5km long trend between the Hooley and Dampier prospects. Importantly, sulphide mineralisation has been intersected in every hole drilled along this horizon to date, which has typical Julimar Complex ultramafic to mafic intrusive geology. All zones of mineralisation remain open in all directions.

A recently completed high-resolution (25m line-spacing) drone airborne magnetic survey over the Baudin-Dampier area has identified an undrilled potential strike extension of this trend ~0.6km northeast of Dampier. This magnetic anomaly has a similar intensity to the Gonneville Intrusion and is interpreted to be sourced from strongly magnetic ultramafic rock-types, which are the preferred host rock for sulphide mineralisation elsewhere within the Julimar Complex.

An initial diamond drill-hole test of this target is now underway as part of the DMIRS Exploration Incentive Scheme (EIS) co-funded drilling program which is a WA State government initiative.

A new geophysical program including ground EM and seismic is currently being planned to test the entire ~12km strike length of the known intrusive ultramafic-mafic trend from Hartog to Baudin to provide effective coverage down-dip of current drilling, and vector towards high-grade mineralised zones.

Authorised for release by the Disclosure Committee of the Company.

For further information please visit www.chalicemining.com or contact:

Corporate Enquiries

Alex Dorsch
Managing Director & CEO
Chalice Mining Limited
+61 8 9322 3960
info@chalicemining.com

Media Enquiries

Nicholas Read Principal and Managing Director Read Corporate Investor Relations +61 8 9388 1474 info@readcorporate.com.au

Follow our communications

LinkedIn: <u>chalice-mining</u>
Twitter: <u>@chalicemining</u>

About the Julimar Nickel-Copper-PGE Project

The 100%-owned Julimar Nickel-Copper-PGE Project is located ~70km north-east of Perth in Western Australia and is surrounded by world-class infrastructure. The Project was staked in early 2018 as part of Chalice's global search for high-potential nickel sulphide exploration opportunities.

Chalice discovered the Gonneville Deposit in the very first drill hole at the project in March 2020, intersecting shallow high-grade PGE-nickel-copper-cobalt-gold sulphide mineralisation. Gonneville is located on private farmland at the southern end of the newly discovered >30km long Julimar Complex.

In November 2021, Chalice defined a tier-1 scale, pit-constrained maiden Mineral Resource Estimate (Resource) for Gonneville. The maiden Resource confirmed Gonneville is one of the largest recent nickel-copper-PGE sulphide discoveries worldwide, and the largest PGE discovery in Australian history – demonstrating the potential for Julimar to become a strategic, long-life 'green metals' asset.

In July 2022, the Resource for Gonneville was updated to 350Mt @ 0.96g/t 3E, 0.16% Ni, 0.10% Cu, 0.015% Co (\sim 0.58% NiEq or \sim 1.8g/t PdEq) (refer to ASX Announcement on 8 July 2022 and Appendix A).

The Resource includes a significant higher-grade sulphide component starting from a depth of ~30m, affording the project significant optionality in development and the potential to materially enhance project economics in the initial years of operations.

The Gonneville Resource is interpreted to cover just ~7% of the interpreted Julimar Complex strike length, with initial large scale exploration activities underway over the remaining strike length. As such the region is considered highly prospective for further orthomagmatic Ni-Cu-PGE discoveries.

The majority of the Julimar Complex lies beneath a portion of the Julimar State Forest, a ~29,000ha area administered by the Government of WA under the Conservation and Land Management Act 1984. Exploration and mining activities may be permitted within State Forest areas with the

concurrence of both the Minister for Environment and Minister for Mines in WA, subject to normal regulatory approval processes.

The Julimar State Forest was the subject of intensive forestry activities until the 1970's, after which time the area was proposed to be upgraded to a Conservation Park. The proposal has not been progressed, largely because the mineral potential of the area is not sufficiently known and partly because the southern portion of the State Forest is within an existing Bauxite mining state agreement (ML 1SA).

Chalice sees exploration and mining activities within a small portion of the State Forest as an overwhelming net positive to the environment, as the green metals at Julimar play a key role in enabling decarbonisation technologies, and the vast majority of the ~29,000ha area not impacted by mining could ultimately be upgraded in conservation status.

The significant Julimar discovery has defined the new West Yilgarn Ni-Cu-PGE Province, an almost entirely unexplored mineral province which is interpreted to extend for ~1,200km along the western margin of the Yilgarn Craton. Chalice holds an unrivalled >8,000km² land position in this exciting new area and is leveraging its competitive 'first mover' advantage.

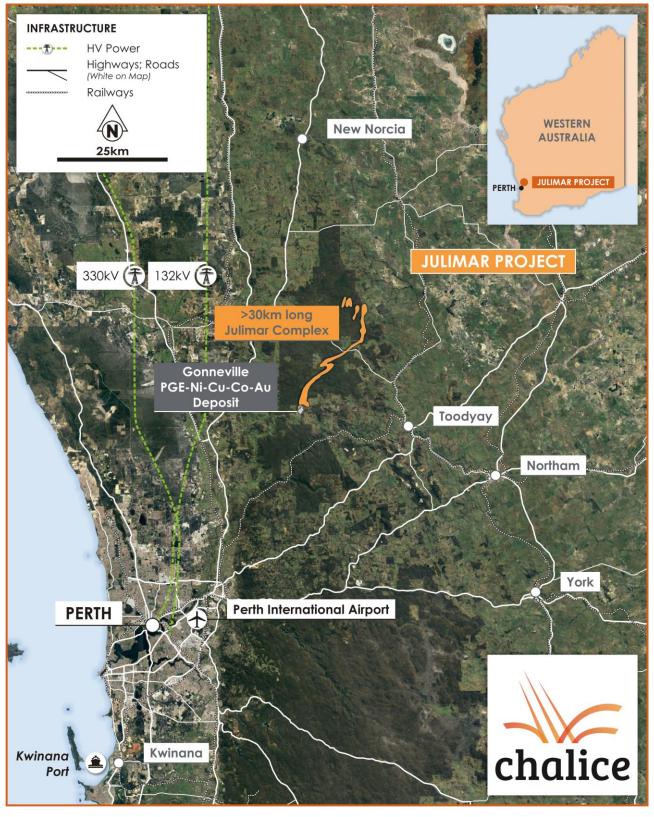


Figure 3. Julimar Complex, Gonneville deposit, Project tenure and nearby infrastructure.

Competent Persons and Qualifying Persons Statement

The information in this announcement that relates to Exploration Results in relation to the Julimar Nickel-Copper-PGE Project is based on and fairly represents information and supporting documentation compiled by Dr. Kevin Frost BSc (Hons) PhD, a Competent Person, who is a Member of the Australian Institute of Geoscientists. Dr. Frost is a full-time employee of the Company as General Manager – Discovery and Growth and has sufficient experience that is relevant to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves, and is a Qualified Person under National Instrument 43-101 – 'Standards of Disclosure for Mineral Projects'. The Qualified Person has verified the data disclosed in this release, including sampling, analytical and test data underlying the information contained in this release. Dr Frost consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

The Information in this announcement that relates to prior exploration results for the Julimar Project is extracted from the following ASX announcements:

- "New Mineralised Zone Intersected at Dampier Target", 7 July 2022; and
- "Seismic Identifies Potential 1.6km Extension of Gonneville", 6 September 2022.

The above announcements are available to view on the Company's website at www.chalicemining.com. The Company confirms that it is not aware of any new information or data that materially affects the exploration results included in the relevant original market announcement. The Company confirms that the form and context in which the Competent Person and Qualified Person's findings are presented have not been materially modified from the relevant original market announcement.

The Information in this announcement that relates to Mineral Resources has been extracted from the ASX announcement titled "Updated Gonneville Mineral Resource" dated 8 July 2022. This announcement is available to view on the Company's website at www.chalicemining.com.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the estimates in the original release continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person and Qualified Person's findings are presented have not been materially modified from the relevant original market announcement. Refer to Appendix A and Appendix B for further information on the Mineral Resource Estimate and metal equivalents.

Forward Looking Statements

This announcement may contain forward-looking statements and forward information, including forward looking information within the meaning of Canadian securities legislation and forward-looking statements within the meaning of the United States Private Securities Litigation Reform Act of 1995 (collectively, forward-looking statements). These forward-looking statements are made as of the date of this announcement and Chalice Mining Limited (the Company) does not intend, and does not assume any obligation, to update these forward-looking statements.

Forward-looking statements relate to future events or future performance and reflect Company management's expectations or beliefs regarding future events and include, but are not limited to: the impact of the discovery on the Julimar Project's capital payback; the Company's strategy and objectives; the realisation of mineral resource estimates; the likelihood of exploration success; the timing of planned exploration and study activities on the Company's projects; access to sites for planned drilling activities; and the success of future potential mining operations; the timing of the receipt of exploration results.

In certain cases, forward-looking statements can be identified by the use of words such as, "aiming", "believes", "considered", "could", "developing", "estimate", "for", "future", "is", "indicate",

"interpreted", "likely", "may", "open", "optionality", "plan" or "planned", "possible", "potential", "provides", 'strategy", "targets", "will" or variations of such words and phrases or statements that certain actions, events or results may, could, would, might or will be taken, occur or be achieved or the negative of these terms or comparable terminology. By their very nature forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements.

Such factors may include, among others, risks related to actual results of current or planned exploration activities; whether geophysical and geochemical anomalies are related to economic mineralisation or some other feature; whether visually identified mineralisation is confirmed by laboratory assays; obtaining appropriate approvals to undertake exploration activities; results of planned metallurgical test work including results from other zones not tested yet, scaling up to commercial operations; changes in project parameters as plans continue to be refined; changes in exploration programs and budgets based upon the results of exploration, changes in commodity prices; economic conditions; grade or recovery rates; political and social risks, accidents, labour disputes and other risks of the mining industry; delays or difficulty in obtaining governmental approvals, necessary licences, permits or financing to undertake future mining development activities; changes to the regulatory framework within which Chalice operates or may in the future; movements in the share price of investments and the timing and proceeds realised on future disposals of investments, the impact of the COVID 19 pandemic as well as those factors detailed from time to time in the Company's interim and annual financial statements, all of which are filed and available for review on SEDAR at sedar.com, ASX at asx.com.au and OTC Markets at otcmarkets.com. The Company also refers to the "Key Risks" section of its institutional capital raise presentation released to the ASX on 24 May 2022.

Although the Company has attempted to identify important factors that could cause actual actions, events or results to differ materially from those described in forward-looking statements, there may be other factors that cause actions, events or results not to be as anticipated, estimated or intended. There can be no assurance that forward-looking statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on forward-looking statements.

ASX:CHN OTCQB:CGMLF Chalice Mining Limited

Table 1. Key drill intersections (>0.4% NiEq cut-off) – Hooley-Dampier prospects

Hole ID	From (m)	To (m)_	Interval (m)	Pd (a/t)	Pt (a/t)	Au (a/t)	Ni (%)	Cu (%)	Co (%)	Ni Eq (%)
HD016	445.0	449.0	4.0	0.44	0.35	0.05	0.09	0.09	0.01	0.44
HD019	75.7	80.0	4.3	0.65	0.24	0.02	0.12	0.04	0.01	0.47
HD019	106.0	124.5	18.5	0.24	0.10	0.05	0.16	0.11	0.01	0.42
HD019	130.0	135.0	5.0	0.26	0.11	0.05	0.16	0.11	0.02	0.43
HD019	138.0	145.0	7.0	0.27	0.13	0.05	0.15	0.13	0.02	0.44
HD019	252.0	260.1	8.1	1.26	1.16	0.06	0.07	0.05	0.01	0.85
Incl	252.0	259.0	7.0	1.31	1.28	0.07	0.07	0.05	0.01	0.90
HD019	291.6	300.0	8.4	0.15	0.04	0.07	0.17	0.15	0.01	0.41
HD021	156.0	177.0	21.0	0.53	0.79	0.03	0.10	0.08	0.01	0.58
Incl	156.0	160.0	4.0	1.08	3.12	0.02	0.03	0.01	0.01	1.17
HD021	200.0	213.0	13.0	0.53	0.32	0.05	0.14	0.10	0.01	0.52
Incl	201.8	204.0	2.2	0.87	0.46	0.03	0.17	0.06	0.02	0.67
and	205.0	207.0	2.0	0.57	0.26	0.05	0.20	0.13	0.01	0.62
and	209.0	212.0	3.0	0.60	0.23	0.11	0.15	0.20	0.01	0.63
HD021	218.0	220.0	2.0	0.39	0.07	0.01	0.24	0.18	0.02	0.60
HD022	35.0	60.0	25.0	0.56	0.67	0.02	0.11	0.05	0.01	0.55
Incl	35.0	39.0	4.0	1.13	3.22	0.01	0.04	0.05	<0.01	1.23
HD022	80.0	85.0	5.0	0.18	0.08	0.06	0.14	0.20	0.01	0.43
HD022	162.8	172.0	9.2	0.38	0.11	0.03	0.26	0.11	0.02	0.59
Incl	162.8	166.5	3.7	0.34	0.11	0.03	0.31	0.13	0.03	0.65
and	169.0	171.0	2.0	0.41	0.07	0.01	0.34	0.13	0.03	0.68
HD022	179.0	189.0	10.0	0.32	0.20	0.01	0.20	0.13	0.02	0.52
Incl	185.0	187.0	2.0	0.83	0.44	0.02	0.45	0.21	0.03	1.11
HD027	251.0	256.1	5.1	0.44	0.11	0.03	0.11	0.12	0.01	0.42
HD027	271.2	274.0	2.9	0.28	0.08	0.04	0.12	0.16	0.01	0.41
HD027	275.7	278.0	2.3	0.21	0.05	0.03	0.13	0.17	0.02	0.41
HD027	286.7	290.7	4.0	0.29	0.04	0.01	0.29	0.30	0.03	0.72
Incl	287.8	290.1	2.3	0.31	0.04	0.01	0.33	0.40	0.03	0.86
HD030	33.0	42.0	9.0	0.58	1.40	0.01	0.08	0.04	0.01	0.69
Incl	36.0	40.6	4.6	0.70	1.89	0.01	0.10	0.04	0.02	0.87
HD030	54.0	60.0	6.0	0.71	0.40	0.07	0.13	0.14	0.01	0.64
Incl	54.0	56.0	2.0	0.81	0.33	0.09	0.14	0.16	0.02	0.70
and	57.0	60.0	3.0	0.76	0.48	0.08	0.13	0.15	0.01	0.69
HD030	103.0	112.0	9.0	0.36	0.10	0.04	0.13	0.12	0.01	0.42
HD030	120.0	127.0	7.0	0.28	0.08	0.01	0.16	0.12	0.01	0.42
HD030	136.0	138.0	2.0	0.27	0.08	0.01	0.19	0.13	0.02	0.46

Table 2. Significant new drill intersections (Oxide: >0.5g/t Pd, >0.9g/t Pd. Sulphide: >0.4% NiEq, >0.6% NiEq) — Gonneville Deposit.

		е верозі								
Hole ID	From (m)	To (m)	Interval (m)	Pd (g/t)	Pt (g/t)	Au (g/t)	Ni (%)	Cυ (%)	Co (%)	Ni Eq (%)
JD018W1	474.0	490.0	16.0	0.79	0.39	0.04	0.11	0.08	0.01	0.58
Incl	481.0	488.0	7.0	1.17	0.52	0.06	0.16	0.12	0.01	0.84
JD018W1	621.0	624.0	3.0	0.42	0.10	0.03	0.14	0.12	0.02	0.46
JD018W1	655.0	657.0	2.0	0.52	0.12	0.01	0.10	0.11	0.01	0.43
JD018W1	662.0	683.0	21.0	0.74	0.17	0.02	0.14	0.13	0.01	0.59
Incl	662.0	668.0	6.0	0.91	0.22	0.03	0.14	0.15	0.01	0.67
and	673.0	678.0	5.0	0.77	0.18	0.02	0.15	0.13	0.02	0.61
and	681.0	683.0	2.0	0.78	0.16	0.02	0.18	0.22	0.02	0.70
JD018W1	688.0	691.9	3.9	0.63	0.14	0.01	0.12	0.06	0.01	0.45
JD018W1	761.9	765.4	3.5	0.63	0.14	0.02	0.14	0.07	0.01	0.48
JD018W1	777.3	788.0	10.7	0.52	0.10	0.02	0.16	0.07	0.02	0.47
Incl	781.0	783.0	2.0	0.60	0.12	0.03	0.24	0.13	0.02	0.65
JD018W1	795.0	810.0	15.0	0.53	0.12	0.01	0.14	0.10	0.01	0.47
JD018W1	895.0	906.6	11.6	1.79	0.88	0.12	0.12	0.36	0.01	1.28
Incl	898.0	903.3	5.3	3.38	1.88	0.22	0.20	0.56	0.02	2.34
JD220W3	311.0	328.0	17.0	0.54	0.11	0.00	0.14	0.07	0.01	0.45
JD220W3	349.8	354.0	4.2	0.68	0.15	0.01	0.16	0.04	0.02	0.51
JD220W3	357.0	423.0	66.0	0.60	0.13	0.01	0.14	0.07	0.01	0.47
Incl	374.0	377.9	3.9	0.86	0.18	0.03	0.16	0.15	0.02	0.68
and	388.0	390.0	2.0	0.98	0.20	0.01	0.16	0.06	0.02	0.64
and	392.0	394.0	2.0	0.62	0.12	0.05	0.14	0.28	0.02	0.66
and	420.0	422.0	2.0	1.16	0.23	0.02	0.22	0.08	0.02	0.80
JD220W3	428.0	451.0	23.0	0.79	0.17	0.02	0.16	0.07	0.01	0.58
Incl	431.0	436.0	5.0	1.12	0.27	0.03	0.16	0.08	0.01	0.71
and	441.0	446.0	5.0	0.95	0.19	0.02	0.17	0.10	0.02	0.68
JD220W3	457.0	465.0	8.0	0.75	0.15	0.02	0.17	0.10	0.02	0.59
JD220W3	473.0	475.0	2.0	0.48	0.10	0.01	0.15	0.08	0.02	0.45
JD220W3	480.0	498.0	18.0	0.49	0.12	0.01	0.13	0.06	0.01	0.43
JD220W3	528.0	545.0	17.0	0.90	0.16	0.03	0.16	0.07	0.02	0.61
Incl	529.1	539.0	9.9	1.16	0.19	0.04	0.19	0.03	0.02	0.71
JD220W3	580.2	601.0	20.9	0.71	0.17	0.01	0.14	0.08	0.01	0.53
Incl	580.9	586.0	5.1	0.83	0.18	0.01	0.15	0.11	0.01	0.60
JD220W3	638.0	708.0	70.0	2.17	0.19	0.03	0.23	0.20	0.02	1.23
Incl	638.0	654.9	16.9	7.39	0.45	0.05	0.40	0.61	0.03	3.54
and	688.0	691.2	3.2	0.63	0.12	0.05	0.25	0.30	0.03	0.84
JD255	51.0	62.0	11.0	1.25	0.25	0.02	0.17	0.28	0.02	0.92
Incl	160.3	163.0	2.7	1.20	0.13	0.07	0.14	0.17	0.01	0.76
JD259	389.0	392.0	3.0	0.45	0.08	0.07	0.13	0.13	0.01	0.47
Incl	432.2	441.0	8.8	1.99	0.54	0.09	0.12	0.11	0.01	1.06

Hole ID	From (m)	To (m)	Interval (m)	Pd (g/t)	Pt (g/t)	Αυ (g/t)	Ni (%)	Cυ (%)	Co (%)	Ni Eq (%)
JD259	465.0	467.0	2.0	0.06	0.00	0.02	0.14	0.46	0.05	0.68
JD259	483.2	486.0	2.8	2.72	1.13	0.30	0.14	0.07	0.01	1.50
Incl	483.8	486.0	2.2	3.37	1.28	0.37	0.15	0.08	0.01	1.79
JD265	330.6	332.7	2.1	0.72	0.43	0.15	0.15	0.09	0.02	0.67
JD297	276.9	288.9	12.0	0.50	0.09	<0.01	0.18	0.05	0.02	0.46
JD297	317.1	378.0	61.0	0.52	0.11	<0.01	0.16	0.06	0.02	0.46
Incl	340.0	343.0	3.0	0.83	0.19	<0.01	0.17	0.09	0.02	0.62
and	351.0	354.0	3.0	0.73	0.15	<0.01	0.20	0.11	0.02	0.64
JD297	382.6	460.0	77.4	0.62	0.13	<0.01	0.15	0.05	0.02	0.48
Incl	385.0	390.0	5.0	0.78	0.16	<0.01	0.21	0.06	0.02	0.63
and	401.0	410.0	9.0	0.91	0.22	<0.01	0.19	0.07	0.02	0.66
JD297	468.9	472.3	3.4	1.22	0.55	0.18	0.20	0.21	0.02	1.01
Incl	468.9	472.0	3.1	1.26	0.59	0.20	0.21	0.23	0.02	1.06
JD297	526.2	530.6	4.4	1.29	0.19	0.23	0.16	0.03	0.01	0.77
Incl	526.2	530.0	3.8	1.42	0.21	0.15	0.17	0.03	0.01	0.80
JD301	396.0	401.0	5.0	0.46	0.10	<0.01	0.15	0.03	0.02	0.40
JD301	411.0	418.0	7.0	0.44	0.11	<0.01	0.16	0.02	0.02	0.40
JD301	429.0	432.7	3.7	0.67	0.22	<0.01	0.18	0.04	0.02	0.56
and	407.0	409.1	2.1	1.28	0.27	<0.01	0.26	0.07	0.02	0.87
JD302	422.0	424.0	2.0	0.56	0.12	<0.01	0.16	0.02	0.02	0.44
JD302	429.0	439.0	10.0	0.51	0.11	0.01	0.16	0.04	0.01	0.43
JD302	467.0	499.0	32.0	0.46	0.09	0.01	0.16	0.04	0.02	0.43
JD302	544.4	550.3	5.9	1.37	0.31	0.17	0.11	0.02	0.01	0.74
Incl	547.0	550.3	3.3	2.10	0.46	0.27	0.11	0.03	0.01	1.04
JD307	351.6	355.0	3.4	0.45	0.22	0.04	0.06	0.14	0.01	0.42
JD312	368.0	433.0	65.0	0.64	0.15	<0.01	0.17	0.05	0.02	0.51
Incl	393.0	396.0	3.0	0.96	0.38	<0.01	0.20	0.11	0.02	0.76
and	399.0	403.0	4.0	1.34	0.31	<0.01	0.28	0.08	0.03	0.95
and	414.0	417.0	3.0	1.03	0.22	<0.01	0.19	0.03	0.02	0.67
JD318	313.7	362.0	48.3	0.96	0.26	0.11	0.16	0.21	0.02	0.79
JD318	368.1	372.5	4.4	0.85	0.44	0.05	0.10	0.15	0.01	0.65
Incl	368.1	371.5	3.4	0.90	0.50	0.06	0.11	0.17	0.01	0.71
JD329	358.0	389.0	31.0	0.99	0.25	<0.01	0.27	0.15	0.02	0.86
Incl	362.3	385.4	23.1	1.16	0.30	<0.01	0.31	0.18	0.03	1.00
JD329	394.0	416.0	22.0	0.68	0.17	<0.01	0.15	0.05	0.02	0.51
Incl	411.0	415.0	4.0	1.04	0.36	<0.01	0.20	0.09	0.02	0.79
JD329	425.0	449.0	24.0	0.72	0.19	<0.01	0.18	0.06	0.02	0.56
Incl	430.5	434.0	3.5	1.24	0.31	<0.01	0.28	0.11	0.02	0.93
JD329	464.0	469.0	5.0	0.39	0.08	<0.01	0.18	0.02	0.02	0.41
JD329	474.6	519.9	45.3	0.55	0.13	0.01	0.19	0.13	0.02	0.57
Incl	487.0	493.0	6.0	0.84	0.17	0.01	0.23	0.07	0.02	0.67
and	498.0	502.0	4.0	0.47	0.09	0.05	0.18	0.89	0.03	1.16
									_	

Hole ID	From (m)	To (m)	Interval (m)	Pd (g/t)	Pt (g/t)	Αυ (g/t)	Ni (%)	Cυ (%)	Co (%)	Ni Eq (%)
JD330	336.8	363.3	26.5	0.61	0.14	<0.01	0.19	0.06	0.02	0.54
Incl	346.0	359.0	13.0	0.73	0.18	<0.01	0.21	0.08	0.02	0.62
JD330	378.0	442.5	64.4	0.66	0.16	<0.01	0.18	0.06	0.02	0.54
Incl	385.9	388.8	3.0	0.77	0.15	<0.01	0.21	0.06	0.02	0.62
and	401.0	403.0	2.0	1.32	0.22	<0.01	0.15	0.02	0.02	0.71
and	419.9	423.0	3.1	1.62	0.33	<0.01	0.36	0.07	0.03	1.14
and	426.0	431.4	5.4	1.16	0.30	<0.01	0.29	0.10	0.02	0.90
and	435.7	438.9	3.2	1.23	0.56	0.01	0.27	0.11	0.03	0.99
JD331	106.0	110.0	4.0	1.40	0.53	0.05	0.09	0.04	0.01	0.76
JD331	315.0	341.0	26.0	0.75	0.16	0.05	0.18	0.18	0.02	0.69
Incl	320.0	325.0	5.0	1.23	0.21	0.14	0.41	0.41	0.04	1.38
and	332.0	338.0	6.0	0.88	0.19	0.05	0.16	0.27	0.02	0.78
JD331	349.9	365.0	15.1	1.16	0.14	<0.01	0.17	0.06	0.02	0.69
JD331	372.0	395.0	23.0	0.60	0.12	<0.01	0.14	0.05	0.01	0.46
JD331	400.0	434.0	34.0	0.48	0.10	<0.01	0.15	0.05	0.02	0.43
JD332	375.3	383.7	8.4	0.38	0.07	0.01	0.15	0.07	0.02	0.41
JD332	388.0	393.0	5.0	0.47	0.11	0.01	0.15	0.08	0.02	0.45
JD332	402.0	518.2	116.2	0.69	0.14	0.02	0.14	0.09	0.01	0.53
Incl	405.5	418.0	12.5	1.01	0.22	0.03	0.17	0.12	0.02	0.71
and	426.8	430.0	3.3	0.87	0.16	0.07	0.33	0.36	0.04	1.11
and	448.0	454.0	6.0	1.27	0.29	0.02	0.18	0.09	0.01	0.79
and	456.0	458.0	2.0	1.39	0.31	0.01	0.18	0.03	0.02	0.80
and	474.3	477.0	2.7	0.60	0.14	0.15	0.16	0.78	0.02	1.11
and	492.1	496.0	4.0	1.09	0.20	0.01	0.15	0.07	0.01	0.66
and	515.0	517.0	2.0	1.04	0.19	0.01	0.18	0.02	0.02	0.65
JD332	523.0	532.0	9.0	0.84	0.20	0.01	0.17	0.07	0.02	0.60
Incl	523.0	526.0	3.0	0.88	0.18	0.01	0.16	0.11	0.02	0.64
and	529.0	531.0	2.0	1.04	0.32	0.01	0.22	0.06	0.02	0.76
JD332	540.0	611.0	71.0	0.64	0.13	0.02	0.16	0.09	0.02	0.54
Incl	565.0	567.0	2.0	0.91	0.19	0.04	0.19	0.13	0.02	0.71
and	571.0	574.0	3.0	0.89	0.22	0.03	0.18	0.10	0.02	0.67
and	577.0	587.0	10.0	0.81	0.16	0.01	0.20	0.06	0.02	0.63
and	595.0	599.0	4.0	0.69	0.12	0.02	0.23	0.12	0.02	0.66
JD332	617.0	622.0	5.0	0.51	0.13	0.01	0.17	0.03	0.02	0.45
JD332	643.3	669.3	26.0	0.71	0.13	0.01	0.14	0.07	0.02	0.52
Incl	652.6	656.7	4.1	1.10	0.15	0.02	0.20	0.12	0.02	0.77
JD332	689.1	692.0	2.9	1.04	0.32	0.02	0.18	0.05	0.02	0.70
JD332	727.0	732.0	5.0	0.51	0.10	0.01	0.17	0.06	0.02	0.46
JD332	739.0	761.0	22.0	0.49	0.10	0.01	0.16	0.03	0.02	0.43
JD332	771.0	780.0	9.0	0.43	0.10	0.01	0.17	0.03	0.02	0.42
JD332	784.0 791.0	794.0	10.0	0.76 1.39	0.14	0.06	0.16	0.07	0.02	0.58

	Erone	To	Interval	P.d.	D4	A.,	Ni.	C	Co	
Hole ID	From (m)	To (m)	Interval (m)	Pd (g/t)	Pt (g/t)	Au (g/t)	Ni (%)	Cυ (%)	Co (%)	Ni Eq (%)
JD332	802.0	834.6	32.6	0.72	0.12	0.06	0.17	0.14	0.02	0.61
Incl	804.0	808.0	4.0	2.09	0.18	0.13	0.16	0.09	0.02	1.05
and	828.0	834.6	6.6	0.61	0.13	0.14	0.16	0.40	0.02	0.80
JD332	839.0	868.0	29.0	0.49	0.12	0.01	0.15	0.06	0.01	0.44
Incl	862.0	865.0	3.0	0.64	0.17	0.06	0.10	0.26	0.01	0.62
JD332	875.0	877.3	2.3	0.34	0.05	0.05	0.11	0.14	0.02	0.41
JD332W1	371.8	381.0	9.2	0.41	0.09	0.02	0.15	0.25	0.02	0.56
JD332W1	386.0	395.0	9.0	0.50	0.11	0.01	0.13	0.04	0.01	0.40
JD332W1	410.3	425.0	14.7	0.68	0.13	0.01	0.16	0.06	0.02	0.52
JD332W1	430.0	435.0	5.0	0.58	0.14	0.01	0.12	0.04	0.01	0.43
JD332W1	438.0	526.0	88.0	0.68	0.14	0.01	0.13	0.06	0.01	0.48
Incl	444.0	447.0	3.0	1.29	0.23	0.01	0.18	0.02	0.02	0.74
and	492.0	494.8	2.8	0.83	0.16	0.01	0.14	0.12	0.02	0.60
and	504.0	511.0	7.0	0.93	0.18	0.01	0.15	0.08	0.01	0.62
and	513.0	516.0	3.0	1.11	0.22	0.01	0.18	0.04	0.02	0.69
JD332W1	537.0	540.9	3.9	0.49	0.11	0.02	0.13	0.12	0.01	0.45
JD332W1	551.5	568.0	16.5	0.55	0.11	0.01	0.16	0.06	0.01	0.46
JD332W1	582.0	620.0	38.0	0.51	0.11	0.02	0.14	0.08	0.02	0.46
JD332W1	713.0	726.9	13.9	1.74	0.35	0.01	0.30	0.27	0.02	1.24
Incl	718.5	721.9	3.4	3.25	1.02	0.02	0.71	0.87	0.04	2.87
JD332W1	761.6	781.0	19.4	0.48	0.12	0.01	0.17	0.03	0.02	0.44
JD332W1	790.0	796.0	6.0	0.56	0.16	0.01	0.18	0.01	0.02	0.47
JD332W1	802.0	811.7	9.7	0.36	0.11	0.01	0.17	0.15	0.02	0.50
JD332W1	816.0	854.0	38.0	0.81	0.42	0.09	0.17	0.14	0.02	0.73
Incl	816.0	818.6	2.6	0.55	0.08	0.03	0.11	0.31	0.02	0.62
and	821.0	827.0	6.0	2.65	1.48	0.35	0.22	0.39	0.02	1.93
and	840.3	844.0	3.8	0.94	1.28	0.08	0.19	0.18	0.02	1.03
JD332W1	861.0	886.7	25.7	0.69	0.20	0.10	0.16	0.39	0.02	0.83
Incl	865.0	870.7	5.7	1.00	0.31	0.19	0.18	0.66	0.02	1.22
and	873.0	875.3	2.3	2.25	0.35	0.23	0.34	2.08	0.04	2.97
JD337	282.0	290.0	8.0	0.28	0.06	0.02	0.14	0.13	0.02	0.41
JD337	293.0	296.9	3.9	0.54	0.09	0.03	0.09	0.32	0.01	0.60
JD337	309.0	314.0	5.0	0.45	0.10	0.04	0.18	0.20	0.02	0.59
JD337	343.0	407.3	64.3	0.80	0.17	0.01	0.17	0.11	0.02	0.62
Incl	344.0	346.0	2.0	1.01	0.23	0.02	0.17	0.10	0.02	0.70
and	352.0	357.0	5.0	0.96	0.22	0.03	0.16	0.14	0.02	0.72
and	374.0	378.0	4.0	0.82	0.16	<0.01	0.18	0.06	0.02	0.61
and	392.0	407.0	15.0	1.17	0.23	0.03	0.23	0.20	0.02	0.91
JD337	437.0	480.1	43.1	0.50	0.10	<0.01	0.17	0.08	0.02	0.48
Incl	444.2	446.5	2.3	1.08	0.25	0.01	0.33	0.38	0.04	1.16
JD337	505.0	531.0	26.0	0.56	0.11	<0.01	0.17	0.05	0.02	0.48
JD337	536.0	547.4	11.4	0.60	0.13	<0.01	0.16	0.05	0.02	0.48

Hole ID	From (m)	To (m)	Interval (m)	Pd (g/t)	Pt (g/t)	Αυ (g/t)	Ni (%)	Cυ (%)	Co (%)	Ni Eq (%)
JD337	555.6	606.8	51.2	1.12	0.21	0.03	0.17	0.10	0.02	0.73
Incl	570.0	577.0	7.0	4.23	0.76	0.05	0.32	0.27	0.02	2.21
and	596.0	602.0	6.0	1.20	0.14	0.09	0.16	0.17	0.01	0.80
JD337	664.0	669.0	5.0	0.83	0.19	0.26	0.03	0.01	0.01	0.45
Incl	664.0	666.0	2.0	1.43	0.20	0.35	0.04	0.01	0.01	0.69
JD340	307.8	334.0	26.2	0.53	0.12	<0.01	0.16	0.03	0.01	0.44
JD340	339.0	377.5	38.5	0.51	0.11	<0.01	0.16	0.05	0.02	0.45
Incl	340.0	344.0	4.0	0.58	0.14	<0.01	0.24	0.12	0.02	0.64
JD340	382.0	384.6	2.6	0.48	0.10	<0.01	0.16	0.03	0.01	0.41
JD340	407.0	464.0	57.0	0.96	0.25	0.01	0.15	0.06	0.01	0.63
Incl	437.0	442.0	5.0	4.34	0.80	0.02	0.15	0.05	0.02	1.87
and	453.0	455.2	2.2	0.69	1.24	0.01	0.17	0.06	0.01	0.79
JD340	484.0	501.0	17.0	0.73	0.15	0.01	0.16	0.13	0.02	0.60
JD340	507.0	564.1	57.1	0.72	0.16	0.05	0.15	0.08	0.01	0.55
Incl	548.0	550.0	2.0	1.64	0.37	0.21	0.20	0.17	0.02	1.08
and	552.6	564.1	11.5	1.18	0.25	0.15	0.15	0.13	0.01	0.79
JD343	262.0	288.0	26.0	0.62	0.27	0.03	0.09	0.07	0.01	0.46
Incl	275.0	277.8	2.8	1.61	0.57	0.07	0.19	0.09	0.02	1.01
JD343	373.0	385.2	12.2	0.43	0.16	0.02	0.09	0.12	0.01	0.41
JD344	371.9	414.0	42.1	0.68	0.14	0.00	0.17	0.04	0.02	0.51
incl	401.0	406.6	5.6	1.19	0.30	<0.01	0.24	0.09	0.03	0.86
JD344	644.0	681.0	37.0	0.74	0.26	0.09	0.18	0.28	0.02	0.79
Incl	651.0	662.3	11.3	1.14	0.34	0.18	0.21	0.67	0.02	1.31
and	679.0	681.0	2.0	2.63	1.71	0.27	0.18	0.60	0.02	2.07
JD344	689.0	703.0	14.0	5.14	0.32	0.36	0.15	0.21	0.01	2.24
Incl	689.0	696.0	7.0	1.44	0.49	0.31	0.19	0.33	0.02	1.20
and	699.2	703.0	3.8	3.79	0.12	0.71	0.09	0.14	0.01	1.72
JD348	263.7	360.0	96.3	0.74	0.16	0.04	0.18	0.15	0.02	0.64
Incl	305.0	310.0	5.0	1.01	0.22	0.03	0.20	0.12	0.02	0.76
and	314.0	318.0	4.0	0.99	0.18	0.05	0.18	0.19	0.02	0.78
and	322.0	326.0	4.0	1.00	0.19	0.02	0.18	0.07	0.02	0.67
and	343.0	360.0	17.0	1.27	0.26	0.09	0.38	0.43	0.03	1.34
JD348	370.0	398.0	28.0	1.42	0.23	0.05	0.26	0.10	0.02	0.94
Incl	374.0	391.8	17.8	1.67	0.28	0.01	0.36	0.11	0.02	1.15
JD348	414.0	442.8	28.8	0.67	0.13	0.01	0.18	0.11	0.02	0.58
Incl	423.3	438.0	14.7	0.92	0.17	0.01	0.21	0.14	0.02	0.73
JD348	476.0	480.6	4.6	1.15	0.17	0.01	0.21	0.09	0.02	0.77
JD348	522.0	545.0	23.0	0.69	0.17	<0.01	0.17	0.06	0.02	0.55
Incl	523.0	527.0	4.0	1.11	0.27	0.01	0.29	0.06	0.03	0.87
JD348	567.0	577.2	10.2	0.75	0.15	0.01	0.15	0.04	0.01	0.51
JD348	610.2	613.8	3.7	1.95	0.28	0.01	0.54	0.19	0.04	1.55
Incl	611.5	613.8	2.3	2.73	0.38	0.02	0.75	0.28	0.06	2.18

Hole ID	From (m)	To (m)	Interval (m)	Pd (g/t)	Pt (g/t)	Au (g/t)	Ni (%)	Cυ (%)	Co (%)	Ni Eq (%)
JD348	618.0	625.0	7.0	0.44	0.09	0.01	0.19	0.06	0.02	0.47
JD348	638.0	666.0	28.0	0.55	0.11	0.07	0.17	0.10	0.02	0.54
Incl	664.0	666.0	2.0	1.16	0.08	0.06	0.41	0.27	0.04	1.19
JD348	671.0	674.0	3.0	0.35	0.07	0.02	0.16	0.05	0.02	0.41
JD348	692.0	716.1	24.1	1.31	0.28	0.15	0.14	0.18	0.02	0.88
Incl	692.0	694.0	2.0	1.18	0.27	0.08	0.15	0.23	0.02	0.87
and	700.0	702.0	2.0	0.77	0.15	0.08	0.18	0.22	0.02	0.73
and	706.0	711.0	5.0	3.76	0.77	0.48	0.16	0.39	0.02	2.09
JRC480	18.0	24.0	6.0	0.60	0.03	0.77	0.03	0.08	0.01	0.54
JRC480	60.0	67.0	7.0	0.76	0.35	0.14	0.19	0.11	0.01	0.70
Incl	60.0	63.0	3.0	1.32	0.67	0.11	0.30	0.18	0.02	1.15
JRC494	262.0	267.0	5.0	0.95	0.21	<0.01	0.20	0.31	0.02	0.88
Incl	263.0	266.0	3.0	1.14	0.25	0.01	0.25	0.47	0.03	1.15

Table 3. New drill hole collar, survey data and assaying status – Julimar Project.

Area	Hole ID	Туре	Easting	Northing	RL	Depth	Survey	Azi	Dip	Assay status
		, · ·	(m)	(m)	(m)	(m)	type	(°)	(°)	<u> </u>
Hartog	HD014	Core	425002	6514107	290	376.0	GPS	169	-70	Reported - NSA
Hartog	HD015	Core	425597	6514407	316	399.0	GPS	130	-51	Reported - NSA
Dampier	HD016	Core	430088	6521852	290	582.2	GPS-RTK	160	-54	Reported
Hartog	HD017	Core	425218	6514084	304	309.8	GPS	66	-75	Reported - NSA
Hartog	HD018	Core	425644	6514581	318	336.4	GPS	129	-68	Reported - NSA
Dampier	HD019	Core	430084	6521535	290	387.4	GPS-RTK	120	-75	Reported
Hartog	HD020	Core	426581	6514259	265	369.9	GPS	104	-51	Reported - NSA
Hann	HD021	Core	427673	6519877	316	396.7	PLAN	149	-65	Reported
Dampier	HD022	Core	430114	6521520	289	378.4	GPS	133	-52	Reported
Dampier	HD023	Core	429760	6521850	297	711.4	GPS	151	-50	Reported - NSA
Hartog	HD024	Core	426021	6513925	264	333.5	GPS	145	-56	Reported - NSA
Hartog	HD025	Core	426377	6513995	257	98.2	GPS	89	-60	Reported - NSA
Hartog	HD026	Core	425769	6513765	254	261.7	GPS	90	-60	Reported - NSA
Hann	HD027	Core	426598	6519124	312	372.4	GPS	135	-59	Reported
Hartog	HD028	Core	424826	6514654	275	395.9	GPS	115	-55	Reported - NSA
Hartog	HD029	Core	425692	6513756	255	249.5	GPS	89	-60	Reported
Hartog	HD030	Core	426356	6518622	297	504.6	GPS	92	-64	Reported
Gonneville	JD015	Core	425048	6512317	237	354.9	GPS-RTK	91	-60	Infill
Gonneville	JD018W1	Core	424598	6513269	265	1080.3	GPS-RTK	94	-65	Reported
Gonneville	JD220W3	Core	424572	6512900	251	709.7	GPS-RTK	123	-58	Reported
Gonneville	JD249	Core	425320	6512922	263	474.9	GPS-RTK	88	-60	Infill
Gonneville	JD254	Core	425166	6512092	230	201.4	GPS-RTK	89	-62	Infill
Gonneville	JD255	Core	425135	6512042	230	253.0	GPS-RTK	93	-61	Infill
Gonneville	JD259	Core	425252	6512916	264	540.7	GPS-RTK	89	-63	Reported
Gonneville	JD260	Core	425210	6512921	265	540.4	GPS-RTK	89	-63	Infill

Area	Hole ID	Туре	Easting	Northing	RL (m)	Depth	Survey	Azi	Dip	Assay status
Connoville	ID2/1	Coro	(m) 425163	(m) 6512919	(m)	(m)	type	(°)	(°)	Infill
Gonneville Gonneville	JD261 JD262	Core	425163	6511922	265 228	534.3	GPS-RTK GPS-RTK	90	-63 -60	Infill Infill
Gonneville	JD262 JD263	Core	425222	6512199	232	373.0	GPS-RTK	89	-62	Infill
Gonneville	JD263 JD264	Core	425046	6512197	232	354.9	GPS-RTK	90	-62 -59	Infill
Gonneville	JD265	Core	424982	6512199	232	370.0	GPS-RTK	90	-62	Reported
Gonneville	JD266	Core	425135	6512962	266	330.4	GPS-RTK	90	-57	Infill
Gonneville	JD267	Core	425631	6513378	245	160.1	GPS-RTK	92	-56	Infill
Gonneville	JD268	Core	425487	6513351	248	351.9	GPS-RTK	88	-60	Infill
Gonneville	JD269	Core	425449	6513354	249	318.7	GPS-RTK	91	-60	Infill
Gonneville	JD271	Core	425007	6512130	232	337.0	GPS-RTK	90	-50	Infill
Gonneville	JD272	Core	425640	6513231	247	130.0	GPS-RTK	87	-60	Infill
Gonneville	JD273	Core	425368	6513602	254	405.8	GPS-RTK	65	-55	Infill
Gonneville	JD274	Core	425617	6513158	249	177.5	GPS-RTK	94	-65	Infill
Gonneville	JD275	Core	425607	6513132	250	208.0	GPS-RTK	88	-65	Infill
Gonneville	JD276	Core	425901	6513432	242	181.0	GPS-RTK	59	-70	Reported - NSA
Gonneville	JD277	Core	424998	6512087	233	342.9	GPS-RTK	90	-60	Infill
Gonneville	JD278	Core	425002	6512084	233	327.3	GPS-RTK	90	-50	Infill
Gonneville	JD279	Core	425079	6512003	233	249.7	GPS-RTK	84	-60	Infill
Gonneville	JD280	Core	425129	6511916	231	143.6	GPS-RTK	85	-59	Infill
Gonneville	JD281	Core	425228	6511970	228	100.0	GPS-RTK	99	-50	Infill
Gonneville	JD282	Core	425241	6511920	228	88.1	GPS-RTK	90	-68	Infill
Gonneville	JD283	Core	425254	6511900	228	84.6	GPS-RTK	70	-50	Reported - NSA
Gonneville	JD284	Core	425626	6513324	246	153.6	GPS-RTK	93	-53	Infill
Gonneville	JD285	Core	425624	6513484	246	161.0	GPS-RTK	90	-51	Infill
Gonneville	JD286	Core	425020	6513001	266	381.4	GPS-RTK	90	-61	Infill
Gonneville	JD287	Core	425297	6512021	230	128.7	GPS-RTK	98	-75	Infill
Gonneville	JD288	Core	425337	6511956	230	141.6	GPS-RTK	92	-72	Reported - NSA
Gonneville	JD289	Core	425135	6512043	230	213.7	GPS-RTK	91	-50	Infill
Gonneville	JD290	Core	424651	6513612	272	438.4	GPS-RTK	69	-55	Reported - NSA
Gonneville	JD291	Core	425628	6513278	246	141.6	GPS-RTK	90	-50	Infill
Gonneville	JD292	Core	425626	6513351	245	150.6	GPS-RTK	90	-50	Infill
Gonneville	JD293	Core	425634	6513441	245	168.5	GPS-RTK	91	-60	Infill
Gonneville	JD294	Core	425156	6512000	229	214.0	GPS-RTK	90	-60	Infill
Gonneville	JD295	Core	424684	6513546	272	324.8	GPS-RTK	87	-59	Reported - NSA
Gonneville	JD296	Core	425511	6512438	244	153.4	GPS-RTK	105	-61	Infill
Gonneville	JD297	Core	425155	6513242	264	693.7	GPS-RTK	127	-73	Reported
Gonneville	JD298	Core	425501	6512318	247	111.4	GPS-RTK	89	-60	Reported - NSA
Gonneville	JD299	Core	425541	6512312	248	99.4	GPS-RTK	90	-60	Infill
Gonneville	JD300	Core	425573	6512319	247	96.4	GPS-RTK	89	-61	Reported - NSA
Gonneville	JD301	Core	425017	6512915	265	441.5	GPS-RTK	84	-64	Reported
Gonneville	JD302	Core	425012	6512953	266	636.1	GPS-RTK	90	-60	Reported
Gonneville	JD303	Core	425163	6511958	230	201.9	GPS-RTK	89	-60	Infill
									-	

Area	Hole ID	Туре	Easting	Northing	RL (m)	Depth (m)	Survey	Azi	Dip (°)	Assay status
Gonneville	JD304	Core	(m) 425647	(m) 6513520	(m) 246	(m) 105.5	GPS-RTK	(°)	(°) -60	Reported
Gonneville	JD304 JD305	Core	425684	6513277	247	94.8	GPS-RTK	89	-60	Infill
Gonneville	JD306	Core	425679	6513239	247	138.6	GPS-RTK	89	-60	Infill
Gonneville	JD307	Core	424796	6513235	268	370.8	GPS-RTK	90	-60	Reported
Gonneville	JD308	Core	425800	6512697	247	120.4	GPS-RTK	89	-60	Infill
Gonneville	JD309	Core	425725	6512656	246	123.4	GPS-RTK	92	-61	Infill
Gonneville	JD310	Core	425758	6512644	245	117.4	GPS-RTK	90	-61	Infill
Gonneville	JD311	Core	425796	6512648	245	120.4	GPS-RTK	90	-59	Infill
Gonneville	JD312	Core	424991	6512992	266	444.5	GPS-RTK	90	-63	Infill
Gonneville	JD313	Core	425681	6513317	245	132.4	GPS-RTK	89	-60	Reported - NSA
Gonneville	JD314	Core	425677	6513351	245	96.6	GPS-RTK	90	-61	Infill
Gonneville	JD315	Core	425680	6513381	245	120.6	GPS-RTK	90	-61	Infill
Gonneville	JD316	Core	425687	6513441	245	105.4	GPS-RTK	90	-60	Infill
Gonneville	JD317	Core	425688	6513474	245	99.4	GPS-RTK	90	-60	Reported - NSA
Gonneville	JD318	Core	424928	6512130	236	411.0	GPS-RTK	89	-60	Infill
Gonneville	JD319	Core	425478	6512286	245	135.9	GPS-RTK	89	-60	Infill
Gonneville	JD320	Core	425519	6512277	247	148.0	GPS-RTK	89	-60	Reported - NSA
Gonneville	JD321	Core	425560	6512284	247	106.6	GPS-RTK	88	-61	Reported - NSA
Gonneville	JD322	Core	425464	6512243	244	139.1	GPS-RTK	90	-60	Infill
Gonneville	JD323	Core	425517	6512238	246	102.4	GPS-RTK	89	-65	Reported - NSA
Gonneville	JD324	Core	425533	6512232	246	114.2	GPS-RTK	87	-55	Reported - NSA
Gonneville	JD325	Core	425484	6512192	245	149.2	GPS-RTK	81	-61	Reported - NSA
Gonneville	JD326	Core	425520	6512197	246	143.5	GPS-RTK	90	-60	Reported - NSA
Gonneville	JD327	Core	425459	6512155	242	126.2	GPS-RTK	90	-60	Reported - NSA
Gonneville	JD329	Core	424977	6512950	266	522.5	GPS-RTK	90	-62	Reported
Gonneville	JD330	Core	424977	6512916	264	468.5	GPS-RTK	83	-59	Reported
Gonneville	JD331	Core	425082	6513322	268	435.4	GPS-RTK	89	-61	Reported
Gonneville	JD332	Core	424493	6512986	252	996.2	GPS-RTK	121	-62	Reported
Gonneville	JD332W1	Core	424493	6512986	252	958.6	GPS-RTK	118	-64	Reported
Gonneville	JD333	Core	425404	6513198	256	271.4	GPS-RTK	93	-63	Infill
Gonneville	JD334	Core	425368	6513199	257	285.4	GPS-RTK	90	-60	Infill
Gonneville	JD335	Core	425327	6513197	259	456.4	GPS-RTK	90	-60	Infill
Gonneville	JD336	Core	425640	6513603	249	135.3	GPS-RTK	91	-59	Infill
Gonneville	JD337	Core	425058	6513317	269	720.5	GPS-RTK	126	-74	Reported
Gonneville	JD338	Core	425410	6513485	236	355.0	GPS	90	-60	Infill
Gonneville	JD339	Core	424752	6512837	257	579.4	GPS-RTK	125	-51	Infill
Gonneville	JD340	Core	425108	6513243	266	681.3	GPS-RTK	92	-60	Reported
Gonneville	JD342	Core	424902	6512936	264	564.3	GPS-RTK	125	-56	Infill
Gonneville	JD343	Core	424888	6513317	267	385.2	GPS-RTK	88	-60	Reported
Gonneville	JD344	Core	424661	6512703	250	747.8	GPS-RTK	126	-60	Reported
Gonneville	JD345	Core	424750	6512838	257	739.0	GPS-RTK	125	-60	Reported
Gonneville	JD346	Core	424762	6512742	253	548.3	GPS-RTK	127	-60	Reported

Area	Hole ID	Туре	Easting (m)	Northing (m)	RL (m)	Depth (m)	Survey type	Azi (°)	Dip (°)	Assay status
Gonneville	JD347	Core	425410	6513565	253	354.8	GPS	90	-60	Reported
Gonneville	JD348	Core	424801	6513000	263	774.1	GPS	127	-65	Reported
Gonneville	JD349	Core	425686	6513521	245	135.6	GPS-RTK	90	-60	Reported - NSA
Gonneville	JD350	Core	425682	6513560	246	54.5	GPS-RTK	92	-59	Reported - NSA
Gonneville	JD351	Core	425300	6512963	263	556.0	GPS-RTK	180	-59	Reported
Gonneville	JD352	Core	425372	6512735	252	272.2	GPS-RTK	178	-62	Infill
Gonneville	JD353	Core	424821	6512900	262	600.9	GPS	127	-52	Reported
Gonneville	JRC028D	RC-Core	425299	6512518	242	354.8	GPS-RTK	93	-59	Reported
Gonneville	JRC174D	RC-Core	425047	6512045	233	282.6	GPS-RTK	92	-60	Infill
Gonneville	JRC207D	RC-Core	425136	6512396	240	341.9	GPS-RTK	88	-60	Infill
Gonneville	JRC211D	RC-Core	425093	6512392	239	385.0	GPS-RTK	87	-59	Infill
Gonneville	JRC214D	RC-Core	425057	6512391	237	397.2	GPS-RTK	92	-60	Reported
Gonneville	JRC216D	RC-Core	425020	6512471	237	493.0	GPS-RTK	92	-60	Reported
Gonneville	JRC473	RC	425409	6513436	250	361.0	GPS-RTK	92	-64	Reported
Gonneville	JRC474	RC	425625	6512518	241	132.0	GPS-RTK	93	-61	Infill
Gonneville	JRC475	RC	425408	6513377	250	361.0	GPS-RTK	88	-61	Reported
Gonneville	JRC476	RC	425579	6512514	240	166.0	GPS-RTK	97	-61	Infill
Gonneville	JRC477	RC	425618	6512471	241	105.0	GPS-RTK	85	-61	Infill
Gonneville	JRC478	RC	425618	6512428	243	100.0	GPS-RTK	89	-75	Reported
Gonneville	JRC479	RC	425619	6512393	244	101.0	GPS-RTK	92	-62	Reported
Gonneville	JRC480	RC	425589	6512359	246	100.0	GPS-RTK	90	-61	Reported
Gonneville	JRC481	RC	425551	6512356	247	100.0	GPS-RTK	90	-62	Infill
Gonneville	JRC482	RC	425524	6512357	247	150.0	GPS-RTK	90	-61	Infill
Gonneville	JRC483	RC	425411	6513277	253	345.0	GPS-RTK	91	-62	Infill
Gonneville	JRC484	RC	425374	6513277	255	387.0	GPS-RTK	88	-62	Infill
Gonneville	JRC485	RC	425412	6513347	250	351.0	GPS-RTK	97	-60	Infill
Gonneville	JRC486	RC	425367	6513349	253	380.0	GPS-RTK	88	-61	Reported
Gonneville	JRC487	RC	425419	6513488	250	39.0	GPS-RTK	90	-61	Infill
Gonneville	JRC488	RC	425368	6513482	252	380.0	GPS-RTK	93	-61	Reported
Gonneville	JRC489	RC	425410	6513560	253	43.0	GPS	90	-60	Infill
Gonneville	JRC490	RC	425370	6513560	254	360.0	GPS	91	-60	Infill
Gonneville	JRC491	RC	425330	6513380	254	250.0	GPS	90	-62	Infill
Gonneville	JRC492	RC	425330	6513440	254	261.0	GPS	96	-61	Infill
Gonneville	JRC493	RC	425250	6513380	259	297.0	GPS	89	-62	Infill
Gonneville	JRC494	RC	425250	6513440	258	321.0	GPS	89	-61	Reported
Gonneville	JRC495	RC	425250	6513520	258	321.0	GPS	91	-58	Infill

Table 3. Gonneville Mineral Resource Estimate (JORC Code 2012), 8 July 2022.

Domain	Cut-off Grade	Category	Mass		Grade									C	ontaine	ed Met	al		
			(Mt)	Pd (g/t)	Pt (g/t)	Au (g/t)	Ni (%)	Cu (%)	Co (%)	NiEq (%)	PdEq (g/t)	Pd (Moz)	Pt (Moz)	Au (Moz)	Ni (kt)	Cu (kt)	Co (kt)	NiEq (kt)	PdEq (Moz)
		Indicated	8.6	1.9	-	0.06	-	-	-	-	1.9	0.52	-	0.02	-	-	-	-	0.54
Oxide	0.9g/t Pd	Inferred	0.4	1.9	-	0.13	-	-	-	-	2.0	0.03	-	0.00	-	-	-	-	0.03
		Subtotal	9.1	1.9	-	0.06	-	-	-	-	1.9	0.55	-	0.02	-	-	-	-	0.57
		Indicated	14	0.80	0.19	0.03	0.17	0.12	0.024	0.65	2.0	0.37	0.09	0.01	24	17	3	93	0.90
Sulphide (Transitional)	0.4% NiEq	Inferred	1.1	0.64	0.17	0.03	0.14	0.11	0.016	0.55	1.6	0.02	0.01	0	2	1	0	6	0.06
(,		Subtotal	15	0.79	0.19	0.03	0.16	0.12	0.023	0.65	1.9	0.39	0.09	0.01	25	18	4	99	0.96
		Indicated	220	0.73	0.16	0.03	0.16	0.10	0.016	0.59	1.8	5.1	1.1	0.20	360	230	34	1,300	12
Sulphide (Fresh)	0.4% NiEq	Inferred	110	0.71	0.15	0.03	0.16	0.11	0.015	0.58	1.7	2.4	0.52	0.10	170	110	16	610	5.9
(,		Subtotal	320	0.72	0.16	0.03	0.16	0.11	0.015	0.58	1.8	7.5	1.7	0.30	530	340	50	1,900	18
		Indicated	0.03	1.7	0.33	80.0	0.16	0.15	0.016	0.99	3.0	0	0	0	0.1	0.1	0.0	0.3	0
Underground	MSO	Inferred	2.9	1.8	0.40	0.06	0.27	0.21	0.021	1.2	3.7	0.17	0.04	0.01	7.6	6.0	0.6	35	0.34
		Subtotal	2.9	1.8	0.40	0.06	0.26	0.21	0.021	1.2	3.7	0.17	0.04	0.01	7.6	6.1	0.6	35	0.34
		Indicated	240	0.78	0.16	0.03	0.16	0.10	0.015	0.57	1.8	6.0	1.2	0.22	380	240	37	1,400	14
All		Inferred	110	0.74	0.16	0.03	0.16	0.11	0.015	0.59	1.8	2.6	0.57	0.11	180	120	1 <i>7</i>	650	6.3
		Total	350	0.77	0.16	0.03	0.16	0.10	0.015	0.58	1.8	8.6	1.8	0.33	560	360	54	2,000	20

Note some numerical differences may occur due to rounding to 2 significant figures.

PdEq oxide (Palladium Equivalent g/t) = Pd (g/t) + 1.27x Au (g/t)

NiEq sulphide (Nickel Equivalent %) = Ni (%) + 0.33x Pd(g/t) + 0.24x Pt(g/t) + 0.29x Au(g/t) + 0.78x Cu(%) + 3.41x Co(%)

PdEq sulphide (Palladium Equivalent g/t) = Pd (g/t) + 0.72x Pt(g/t) + 0.86x Au(g/t) + 2.99x Ni(%) + 2.33x Cu(%) + 10.18x Co(%)

MSO optimisation defined reasonable shapes that could be extracted by underground mining methods.

Includes drill holes drilled up to and including 18 March 2022.

The Gonneville Resource is quoted in both nickel equivalent (NiEq) and palladium equivalent (PdEq) terms to take into account the contribution of multiple potentially payable metals. The cut-off grade for the sulphide domain was determined using NiEq in preference over PdEq, due to the assumed requirement for sulphide flotation to recover the metals.

PdEq is quoted given the relative importance of palladium by value at the assumed prices. Separate metal equivalent calculations are used for the oxide and transitional/sulphide zones to take into account the differing metallurgical recoveries in each zone.

Oxide Domain

Initial metallurgical testwork indicates that only palladium and gold are likely to be recovered in the oxide domain, therefore no NiEq grade has been quoted for the oxide. The PdEq grade for the oxide has been calculated using the formula:

PdEq oxide (g/t) = Pd(g/t) + 1.27x Au(g/t).

- Metal recoveries based on limited metallurgical test work completed to date:
 - « Pd 75%, Au 95%.
- « Metal prices used are consistent with those used in the pit optimisation:
 - ((US\$1,800/oz Pd, US\$1,800/oz Au.

Transitional and Fresh Sulphide Domains

Based on metallurgical testwork completed to date for the sulphide domain, it is the Company's opinion that all the quoted elements included in metal equivalent calculations (palladium, platinum, gold, nickel, copper and cobalt) have a reasonable potential of being recovered and sold.

Only limited samples have been collected from the transitional zone due to its relatively small volume. Therefore, the metallurgical recovery of all metals in this domain are unknown. However, given the relatively small proportion of the transition zone in the Mineral Resource, the impact on the metal equivalent calculation is not considered to be material.

Metal equivalents for the transitional and sulphide domains are calculated according to the formula below:

- "
 NiEq (%) = Ni(%) + 0.33x Pd(g/t) + 0.24x Pt(g/t) + 0.29x Au(g/t) + 0.78x Cu(%) + 3.41x Co(%);
- "

 PdEq (g/t) = Pd(g/t) + 0.72x Pt(g/t) + 0.86x Au(g/t) + 2.99x Ni(%) + 2.33x Cu(%) + 10.18x Co(%).

Metal recoveries used in the metal equivalent calculations are based on rounded average Resource grades for the higher-grade sulphide domain (>0.6% NiEq cut-off):

« Pd – 70%, Pt – 70%, Au – 60%, Ni – 55%, Cu – 90%, Co – 55%.

Metal prices used are consistent with those used in the Whittle pit optimisation (based on P20-30 long term analyst estimates):

US\$1,800/oz Pd, US\$1,300/oz Pt, US\$1,800/oz Au, US\$22,000/t Ni, US\$10,500/t Cu and US\$75,000/t Co.

Section 1 Sampling Techniques and Data A-1

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Diamond core was either quarter cored (HQ for Gonneville drilling) half cored (NQ or HQ for exploration drilling) with samples taken over selective intervals ranging from 0.2m to 1.2m (typically 1.0m).
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Qualitative care taken when sampling diamond drill core to sample the same half of the drill core.
techniques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	Mineralisation is easily recognised by the presence of sulphides. Diamond drill core sample intervals were selected on a qualitative assessment of sulphide content
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 A mixture of diamond drill core size used including NQ (47.6mm), HQ (63.5mm diameter) or PQ (85mm). Triple tube has been used from surface until competent bedrock and then standard tube thereafter. Core orientation is by an ACT Reflex (ACT II RD) tool
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 Individual recoveries of diamond drill core samples were assessed quantitively by comparing measured core length with expected core length from drillers mark. Generally, core recovery was excellent in fresh rock and approaching 100%. Core recovery in oxide material is often poor due to sample washing out. Core recovery in the oxide zone averages 60%
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 With diamond drilling triple tube coring in the oxide zone is undertaken to improve sample recovery. This results in better recoveries, but recovery is still only moderate to good. Diamond core samples were consistently taken from the same side of the core

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no evidence of a sample recovery and grade relationship in unweathered material.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 All drill holes were logged geologically including, but not limited to; weathering, regolith, lithology, structure, texture, alteration and mineralisation. Logging was at an appropriate quantitative standard for infill drilling and resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 Logging is considered qualitative in nature. Diamond drill core is photographed wet before cutting.
	The total length and percentage of the relevant intersections logged.	 All holes were geologically logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	 Diamond core was either quarter cored (HQ for Gonneville drilling) or half cored (NQ or HQ and PQ for exploration drilling) with samples taken over selective intervals ranging from 0.2m to 1.2m (typically 1.0m).
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 RC assay samples were collected as two 1m splits from the rig cyclone via a cone splitter. The cone splitter was horizontal to ensure sample representivity. Wet or damp samples were noted in the sample logging sheet. A majority of samples were dry.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Sample preparation is industry standard and comprises oven drying, jaw crushing and pulverising to -75 microns (80% pass).
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 Field duplicates were collected from diamond drilling at an approximate ratio of one in twenty five. Diamond drill core field duplicates collected as ¼ core.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	 In the majority of cases the entire hole has been sampled and assayed. Duplicate sample results were compared with the original sample results and there is no bias observed in the data.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	 Drill sample sizes are considered appropriate for the style of mineralisation sought and the nature of the drilling program.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures	 Diamond drill core underwent sample preparation and geochemical analysis by ALS Perth. Au-Pt-Pd was

Criteria laboratory	JORC Code explanation	Commentary
tests	used and whether the technique is considered partial or total.	analysed by 50g fire assay fusion with an ICP-AES finish (ALS Method code PGM-ICP24). A 34-element suite was analysed by ICP-MS following a fouracid digest (ALS method code ME-ICP61 including Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn, Zr. Additional oregrade analysis was performed as required for elements reporting out of range for Ni, Cr, Cu (ALS method code ME-OG-62) and Pd, Pt (ALS method code PGM-ICP27).
	For geophysical tools, spectrometers,	g
	handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable as no data from such tools or instruments are reported
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established.	 Certified analytical standards and blanks were inserted at appropriate intervals for diamond core with an insertion rate of >5%. All QAQC samples display results within acceptable levels of accuracy and precision.
	The verification of significant intersections by either independent or alternative company personnel.	Significant drill intersections are checked by the Project Geologist and then by the General Manager Exploration. Significant intersections are cross-checked with the logged geology and drill core after final assays are received.
		No twinning undertaken for drill holes for exploration holes (HD prefix)
Verification of sampling and assaying		 At Gonneville (holes with a JD or JRC prefix) eight sets of twinned holes (RC versus Diamond) have been drilled to provide a comparison between grade/thickness variations over a maximum of 5m separation between drill holes.
	The use of twinned holes.	 Palladium assays have been focused on as part of twin hole comparisons for six sets, with no significant grade bias observed.
		 Two sets of twins have been analysed for Pd, Ni and Cu with no significant grade bias apparent.
		 Assays correlate well between holes. In detail there is variation for higher grade samples in terms of both

Criteria	JORC Code explanation	Commentary
		location and grade. There is no discernible bias between drill types.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Primary drill data was collected digitally using OCRIS software before being transferred to the master SQL database. All procedures including data collection, verification, uploading to the database etc are captured in detailed procedures and summarised in a single document.
	Discuss any adjustment to assay data	 No adjustments were made to the lab reported assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Drill hole collar locations are initially recorded by Chalice employees using a handheld GPS with a +/- 3m margin of error. RTK-DGPS collar pick-ups replace handheld GPS collar pick-ups and have +/-20 mm margin of error. Planned and final hole coordinates are compared after pick up to ensure that the original target has been tested.
	Specification of the grid system used.	 The grid system used for the location of all drill holes is GDA94 - MGA (Zone 50).
	Quality and adequacy of topographic control.	 RLs for reported holes were derived from RTK-DGPS pick-ups.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 Diamond drill hole spacing is variable given the early stage of exploration drilling.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 Results diamond drilling at Dampier, Hartog, Hann and Hooley are not considered sufficient to assume geological or grade continuity. At the Gonneville deposit RC and diamond drill hole spacing varies from between 40m x 40 m in the south to 80m x 80m in the north and west of the deposit.
	Whether sample compositing has been applied.	 No compositing undertaken for diamond drill core or RC samples.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 Diamond drill holes at Dampier, Hartog, Hann and Hooley were typically oriented within 30° of orthogonal to the interpreted dip and strike of the known strike. The orientation of any mineralisation intersected is unknown. RC and Diamond drill holes at Gonneville were typically oriented within 15° of orthogonal to the interpreted dip and strike of the known

Criteria	JORC Code explanation	Commentary
		zone of mineralisation. However, several holes were drilled at less optimal azimuths due to site access constraints or to test for alternative mineralisation orientations. At exploration targets the orientation of any mineralisation intersected is unknown.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The orientation of the drilling is not considered to have introduced sampling bias.
Sample security	The measures taken to ensure sample security.	 Samples were collected in polyweave bags at the core cutting facility. The polyweave bags have five samples each and are cable tied. Filled bags were collected into palletised bulk bags at the field office and delivered directly from site to ALS laboratories in Wangara, Perth by a Chalice contractor several times weekly.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 None completed for the Dampier, Hartog, Hann and Hooley drilling programs. Cube Consulting conducted a site visit and review of the sampling techniques and data as part of the July 2022 Resource Estimate on 12 May 2022. SRK completed an independent assurance review of the Chalice procedures and documentation in 2021, which continue to apply in 2022, and the appropriateness of Cube Consulting estimation methods employed

Section 2 Reporting of Exploration Results A-2

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 Exploration activities are ongoing over E70/5119. The holder CGM (WA) Pty Ltd is a wholly owned subsidiary of Chalice Mining Limited
		 Portions of E70/5119 cover the Julimar State Forest, in which Chalice has an approved Conservation Management Plan and Native Vegetation Clearing Permit.
		 E70/5119 partially overlaps ML1SA, a State Agreement covering Bauxite mineral rights only.

Criteria	JORC Code explanation	Commentary
		There are no known encumbrances other than the ones noted above.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 There are no known impediments to operating on the tenements where they cover private freehold land.
		 The tenements are in good standing. E70/5119 partially overlaps ML1SA, a State Agreement covering Bauxite mineral rights only.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 There is no previous exploration at Gonneville and only limited exploration has been completed by other exploration parties in the vicinity of the targets identified by Chalice to date. Chalice has compiled historical records dating back to the early 1960's which indicate only three genuine explorers in the area, all primarily targeting Fe-Ti-V mineralisation. Over 1971<1972, Garrick Agnew Pty Ltd undertook reconnaissance surface sampling over prominent aeromagnetic anomalies in a search for 'Coates deposit style' vanadium mineralisation. Surface sampling methodology is not described in detail, nor were analytical methods specified, with samples analysed for V2O5, Ni, Cu, Cr, Pb and Zn, results of which are referred to in this announcement. Three diamond holes were completed by Bestbet Pty Ltd targeting Fe-Ti-V situated approximately 3km NE of JRC001. Bestbet Pty Ltd undertook 27 stream sediment samples within E70/5119. Elevated levels of palladium were noted in the coarse fraction (<5mm+2mm) are reported in this release. Finer fraction samples did not replicate the coarse fraction results.
		 A local AMAG survey was flown in 1996 by Alcoa using 200m line spacing which has been used by Chalice for targeting purposes.
		 A local AMAG survey was flown in 1996 by Alcoa using 200m line spacing which has been used by Chalice for targeting purposes.
		 An Alcoa and CRA JV completed seven diamond holes in the 1970s targeting a magnetic high to the north of E70/5119 and the east of

Criteria	JORC Code explanation	Commentary
		E70/5351 testing for vanadium (Boomer Hill).
Geology	Deposit type, geological setting and style of mineralisation.	The target deposit type is an orthomagmatic Ni-Cu-PGE sulphide deposit, within the Yilgarn Craton. The style of sulphide mineralisation intersected consists of massive, matrix, stringer and disseminated sulphides typical of metamorphosed and structurally overprinted orthomagmatic Ni sulphide deposits.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Down hole length and interception depth hole length.	 Provided in body of text.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No material information has been excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Significant intercepts are reported using a >0.4% NiEq length-weighted. A maximum of 4m internal dilution has been applied. Higher grade internal intervals are reported using a >0.6% NiEq length-weighted cut off. A maximum of 2m internal dilution has been applied.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Not applicable
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Metal price assumptions used in the metal equivalent calculations are: US\$1,800/oz Pd, US\$1,300/oz Pt, US\$1,800/oz Au, US\$22,000/t Ni, US\$10,500/t Cu, US\$75,000/t Co. Metallurgical recovery assumptions used in the metal equivalent calculation for the oxide material are: Pd – 75%, Au – 95%.

Criteria	JORC Code explanation	Commentary
		 Hence for the oxide material PdEq (g/t) = Pd (g/t) + 1.27 x Au (g/t).
		 Metallurgical recovery assumptions used in the metal equivalent calculation for the sulphide (fresh)
		material are: Pd – 70%, Pt – 70%, Au – 60%, Ni – 55%, Cu – 90%, Co - 55%.
		 Hence for the sulphide material NiEq = Ni (%) + 0.33x Pd(g/t) + 0.24x Pt(g/t) + 0.29x Au(g/t) + 0.78x Cu(%) + 3.41x Co(%) and PdEq = Pd (g/t) + 0.72x Pt(g/t) + 0.86x Au(g/t) + 2.99x Ni(%) + 2.33x Cu(%) + 10.18x Co(%)
		 The volume of transitional material is small and considered unlikely to materially affect the overall metal equivalent calculation.
	These relationships are particularly important in the reporting of Exploration Results.	 At Hartog, Hooley and Dampier diamond drill holes were typically oriented within 30° of orthogonal to the interpreted dip and strike of the known zone of mineralisation. However, some holes were drilled at less optimal azimuths due to site constraints.
Relationship between mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	 At Gonneville RC and Diamond drill holes were typically oriented within 15° of orthogonal to the interpreted dip and strike of the known zone of mineralisation. However, several holes were drilled at less optimal azimuths due to site access constraints or to test for alternative mineralisation orientations.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	All widths are quoted down-hole. True widths vary depending on the orientation of the hole and the orientation of the mineralisation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in the body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All exploration holes including those without significant intercepts have been reported. At Gonneville, all holes drilled outside the July 2022 Gonneville resource envelope have been reported. Reporting of Infill holes within the Gonneville Resource have not been reported as it is not practicable and

Appendix C JORC Table 1

Criteria	JORC Code explanation	Commentary
		results are consistent with previous drilling results
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 A 2D seismic survey was undertaken by HiSeis Pty Ltd in May 2022 along two east-west lines and 1 north-south tie line The seismic survey was undertaken by a high-power Vibroseis source with geophones placed at 5m intervals along/adjacent to lines. HiSeis provided processed/filtered data including Pseudo Relief, Cosine Phase, Laplacian Edge Detection and Amplitude Envelope grids which were utilised for the domain and line interpretation Velocity measurements were collected from core samples to allow a time to depth conversion and calculated acoustic impedance All meaningful data has been included
Further work	The nature and scale of planned further work (eg. tests for lateral Exts or depth Exts or large-scale step-out drilling).	 Diamond drilling will continue to test high-priority targets including EM conductors. Further drilling along strike and down dip may occur at these and other targets depending on results.
runner work	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Any potential extensions to mineralisation are shown in the figures in the body of the text.