Rechnung: Gewicht-Volumen

  • Hallo,


    ich bin eben bei einer Rechnung auf folgendes Problem gestoßen. Wenn ich die Angaben von Durchmesser und Höhe einer Münze nehme, dann das Volumen des errechneten Zylinders mit der Dichte von Gold multipliziere, dann kommt ein wesentlich höherer Wert für das Gewicht der Münze heraus, als sie haben sollte.
    Ich demonstriere diese Rechnung kurz anhand eines Australischen Nuggets:


    Gewicht: 1 Unze = 31,103g
    Durchmesser: 3,21 cm
    Radius: 1,605 cm
    Höhe: 0,265 cm
    Dichte(Gold): 19,32 g/cm3


    Fläche F = r2 * PI = (1,605)2 * PI = 8,0928 cm2
    Volumen V = r2 * PI * h = (1,605)2 * PI * 0,265 = 2,1446 cm3
    Gewicht G = V * D = 2,14458 * 19,32 = 41,4336 g


    Die Münze sollte also 41,4336g anstatt 31,103g wiegen. Weiterhin habe ich mir überlegt, dass die Höhe nur am Rand der Münze gilt. Im Mittel wird sie eine geringere Höhe aufweisen. In folgender Rechnung rechne ich also Rückwärts um auf die mittlere Höhe zu schließen.


    Volumen V = Gewicht / Dichte = 31,103 / 19,32 = 1,6099 cm3
    Höhe h = Volumen / Fläche = 1,6099 / 8,0928 = 0,1989 cm


    Die Münze hat also im MITTEL nur eine Höhe von 0,1989 cm. Das heißt also, wenn die Münze am Rand 0,265 cm Höhe hat, hat sie an einer anderen Stelle evtl. nur 0,1328 cm Höhe.
    Ist das Richtig? Hat schon mal jemand das Volumen seiner Münzen genau bestimmt?

Schriftgröße:  A A A A A